Exercise 9

Verify the given linear approximation at $a=0$. Then determine the values of x for which the linear approximation is accurate to within 0.1.

$$
\sqrt[4]{1+2 x} \approx 1+\frac{1}{2} x
$$

Solution

Plugging in $x=0$ to the function yields $\sqrt[4]{1+2(0)}=1$, so $(0,1)$ is the point on the curve that the tangent line goes through. Taking the derivative of the function yields

$$
\frac{d}{d x} \sqrt[4]{1+2 x}=\frac{d}{d x}(1+2 x)^{1 / 4}=\frac{1}{4}(1+2 x)^{-3 / 4} \cdot \frac{d}{d x}(1+2 x)=\frac{1}{4}(1+2 x)^{-3 / 4} \cdot 2=\frac{1}{2}(1+2 x)^{-3 / 4}
$$

Set $x=0$ to get the slope of the tangent line.

$$
\left.\frac{d}{d x} \sqrt[4]{1+2 x}\right|_{x=0}=\frac{1}{2}[1+2(0)]^{-3 / 4}=\frac{1}{2}
$$

Use the point-slope formula to get the equation of this line.

$$
\begin{gathered}
y-1=\frac{1}{2}(x-0) \\
y-1=\frac{1}{2} x \\
y=\frac{1}{2} x+1
\end{gathered}
$$

As a result, the linearization to $\sqrt[4]{1+2 x}$ at 0 is

$$
L(x)=\frac{1}{2} x+1 .
$$

Now find the values of x for which the linear approximation is accurate to within 0.1.

$$
\begin{gathered}
\left|\sqrt[4]{1+2 x}-\left(\frac{1}{2} x+1\right)\right|<0.1 \\
\left|\left(\frac{1}{2} x+1\right)-\sqrt[4]{1+2 x}\right|<0.1 \\
-0.1<\left(\frac{1}{2} x+1\right)-\sqrt[4]{1+2 x}<0.1 \\
-0.1+\sqrt[4]{1+2 x}<\frac{1}{2} x+1<0.1+\sqrt[4]{1+2 x}
\end{gathered}
$$

Plot each of these functions versus x.

The linear approximation stays between the curves for

$$
-0.368935<x<0.677669
$$

This is the interval that the linear approximation is accurate to within 0.1.

